Copied to
clipboard

G = C42.55Q8order 128 = 27

15th non-split extension by C42 of Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.55Q8, (C4×C8)⋊14C4, (C2×C4).73D8, (C2×C4).35Q16, (C2×C4).70SD16, C4.11(C4.Q8), C4.15(C2.D8), C22.34(C2×D8), C429C4.4C2, C42.319(C2×C4), C2.1(C4.4D8), (C22×C4).576D4, C23.750(C2×D4), C4.1(C42.C2), C22.27(C2×Q16), C2.7(C428C4), C22.4Q16.3C2, C2.1(C4.SD16), C22.51(C2×SD16), C4.57(C42⋊C2), (C22×C8).478C22, (C22×C4).1338C23, (C2×C42).1055C22, C22.55(C4.4D4), (C2×C4×C8).17C2, C2.7(C2×C2.D8), C2.7(C2×C4.Q8), (C2×C8).211(C2×C4), C22.96(C2×C4⋊C4), (C2×C4).190(C2×Q8), (C2×C4).130(C4⋊C4), (C2×C4⋊C4).44C22, (C2×C4).556(C4○D4), (C2×C4).536(C22×C4), SmallGroup(128,566)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.55Q8
C1C2C22C2×C4C22×C4C22×C8C2×C4×C8 — C42.55Q8
C1C2C2×C4 — C42.55Q8
C1C23C2×C42 — C42.55Q8
C1C2C2C22×C4 — C42.55Q8

Generators and relations for C42.55Q8
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=a2b2c3 >

Subgroups: 236 in 124 conjugacy classes, 76 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C4×C8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C429C4, C2×C4×C8, C42.55Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, D8, SD16, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C4.4D4, C42.C2, C2×D8, C2×SD16, C2×Q16, C428C4, C2×C4.Q8, C2×C2.D8, C4.4D8, C4.SD16, C42.55Q8

Smallest permutation representation of C42.55Q8
Regular action on 128 points
Generators in S128
(1 75 23 62)(2 76 24 63)(3 77 17 64)(4 78 18 57)(5 79 19 58)(6 80 20 59)(7 73 21 60)(8 74 22 61)(9 51 42 25)(10 52 43 26)(11 53 44 27)(12 54 45 28)(13 55 46 29)(14 56 47 30)(15 49 48 31)(16 50 41 32)(33 91 121 97)(34 92 122 98)(35 93 123 99)(36 94 124 100)(37 95 125 101)(38 96 126 102)(39 89 127 103)(40 90 128 104)(65 115 107 85)(66 116 108 86)(67 117 109 87)(68 118 110 88)(69 119 111 81)(70 120 112 82)(71 113 105 83)(72 114 106 84)
(1 49 5 53)(2 50 6 54)(3 51 7 55)(4 52 8 56)(9 60 13 64)(10 61 14 57)(11 62 15 58)(12 63 16 59)(17 25 21 29)(18 26 22 30)(19 27 23 31)(20 28 24 32)(33 106 37 110)(34 107 38 111)(35 108 39 112)(36 109 40 105)(41 80 45 76)(42 73 46 77)(43 74 47 78)(44 75 48 79)(65 126 69 122)(66 127 70 123)(67 128 71 124)(68 121 72 125)(81 92 85 96)(82 93 86 89)(83 94 87 90)(84 95 88 91)(97 114 101 118)(98 115 102 119)(99 116 103 120)(100 117 104 113)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 83 55 92)(2 120 56 97)(3 81 49 90)(4 118 50 103)(5 87 51 96)(6 116 52 101)(7 85 53 94)(8 114 54 99)(9 126 58 67)(10 37 59 108)(11 124 60 65)(12 35 61 106)(13 122 62 71)(14 33 63 112)(15 128 64 69)(16 39 57 110)(17 119 31 104)(18 88 32 89)(19 117 25 102)(20 86 26 95)(21 115 27 100)(22 84 28 93)(23 113 29 98)(24 82 30 91)(34 75 105 46)(36 73 107 44)(38 79 109 42)(40 77 111 48)(41 127 78 68)(43 125 80 66)(45 123 74 72)(47 121 76 70)

G:=sub<Sym(128)| (1,75,23,62)(2,76,24,63)(3,77,17,64)(4,78,18,57)(5,79,19,58)(6,80,20,59)(7,73,21,60)(8,74,22,61)(9,51,42,25)(10,52,43,26)(11,53,44,27)(12,54,45,28)(13,55,46,29)(14,56,47,30)(15,49,48,31)(16,50,41,32)(33,91,121,97)(34,92,122,98)(35,93,123,99)(36,94,124,100)(37,95,125,101)(38,96,126,102)(39,89,127,103)(40,90,128,104)(65,115,107,85)(66,116,108,86)(67,117,109,87)(68,118,110,88)(69,119,111,81)(70,120,112,82)(71,113,105,83)(72,114,106,84), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,60,13,64)(10,61,14,57)(11,62,15,58)(12,63,16,59)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32)(33,106,37,110)(34,107,38,111)(35,108,39,112)(36,109,40,105)(41,80,45,76)(42,73,46,77)(43,74,47,78)(44,75,48,79)(65,126,69,122)(66,127,70,123)(67,128,71,124)(68,121,72,125)(81,92,85,96)(82,93,86,89)(83,94,87,90)(84,95,88,91)(97,114,101,118)(98,115,102,119)(99,116,103,120)(100,117,104,113), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,55,92)(2,120,56,97)(3,81,49,90)(4,118,50,103)(5,87,51,96)(6,116,52,101)(7,85,53,94)(8,114,54,99)(9,126,58,67)(10,37,59,108)(11,124,60,65)(12,35,61,106)(13,122,62,71)(14,33,63,112)(15,128,64,69)(16,39,57,110)(17,119,31,104)(18,88,32,89)(19,117,25,102)(20,86,26,95)(21,115,27,100)(22,84,28,93)(23,113,29,98)(24,82,30,91)(34,75,105,46)(36,73,107,44)(38,79,109,42)(40,77,111,48)(41,127,78,68)(43,125,80,66)(45,123,74,72)(47,121,76,70)>;

G:=Group( (1,75,23,62)(2,76,24,63)(3,77,17,64)(4,78,18,57)(5,79,19,58)(6,80,20,59)(7,73,21,60)(8,74,22,61)(9,51,42,25)(10,52,43,26)(11,53,44,27)(12,54,45,28)(13,55,46,29)(14,56,47,30)(15,49,48,31)(16,50,41,32)(33,91,121,97)(34,92,122,98)(35,93,123,99)(36,94,124,100)(37,95,125,101)(38,96,126,102)(39,89,127,103)(40,90,128,104)(65,115,107,85)(66,116,108,86)(67,117,109,87)(68,118,110,88)(69,119,111,81)(70,120,112,82)(71,113,105,83)(72,114,106,84), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,60,13,64)(10,61,14,57)(11,62,15,58)(12,63,16,59)(17,25,21,29)(18,26,22,30)(19,27,23,31)(20,28,24,32)(33,106,37,110)(34,107,38,111)(35,108,39,112)(36,109,40,105)(41,80,45,76)(42,73,46,77)(43,74,47,78)(44,75,48,79)(65,126,69,122)(66,127,70,123)(67,128,71,124)(68,121,72,125)(81,92,85,96)(82,93,86,89)(83,94,87,90)(84,95,88,91)(97,114,101,118)(98,115,102,119)(99,116,103,120)(100,117,104,113), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,55,92)(2,120,56,97)(3,81,49,90)(4,118,50,103)(5,87,51,96)(6,116,52,101)(7,85,53,94)(8,114,54,99)(9,126,58,67)(10,37,59,108)(11,124,60,65)(12,35,61,106)(13,122,62,71)(14,33,63,112)(15,128,64,69)(16,39,57,110)(17,119,31,104)(18,88,32,89)(19,117,25,102)(20,86,26,95)(21,115,27,100)(22,84,28,93)(23,113,29,98)(24,82,30,91)(34,75,105,46)(36,73,107,44)(38,79,109,42)(40,77,111,48)(41,127,78,68)(43,125,80,66)(45,123,74,72)(47,121,76,70) );

G=PermutationGroup([[(1,75,23,62),(2,76,24,63),(3,77,17,64),(4,78,18,57),(5,79,19,58),(6,80,20,59),(7,73,21,60),(8,74,22,61),(9,51,42,25),(10,52,43,26),(11,53,44,27),(12,54,45,28),(13,55,46,29),(14,56,47,30),(15,49,48,31),(16,50,41,32),(33,91,121,97),(34,92,122,98),(35,93,123,99),(36,94,124,100),(37,95,125,101),(38,96,126,102),(39,89,127,103),(40,90,128,104),(65,115,107,85),(66,116,108,86),(67,117,109,87),(68,118,110,88),(69,119,111,81),(70,120,112,82),(71,113,105,83),(72,114,106,84)], [(1,49,5,53),(2,50,6,54),(3,51,7,55),(4,52,8,56),(9,60,13,64),(10,61,14,57),(11,62,15,58),(12,63,16,59),(17,25,21,29),(18,26,22,30),(19,27,23,31),(20,28,24,32),(33,106,37,110),(34,107,38,111),(35,108,39,112),(36,109,40,105),(41,80,45,76),(42,73,46,77),(43,74,47,78),(44,75,48,79),(65,126,69,122),(66,127,70,123),(67,128,71,124),(68,121,72,125),(81,92,85,96),(82,93,86,89),(83,94,87,90),(84,95,88,91),(97,114,101,118),(98,115,102,119),(99,116,103,120),(100,117,104,113)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,83,55,92),(2,120,56,97),(3,81,49,90),(4,118,50,103),(5,87,51,96),(6,116,52,101),(7,85,53,94),(8,114,54,99),(9,126,58,67),(10,37,59,108),(11,124,60,65),(12,35,61,106),(13,122,62,71),(14,33,63,112),(15,128,64,69),(16,39,57,110),(17,119,31,104),(18,88,32,89),(19,117,25,102),(20,86,26,95),(21,115,27,100),(22,84,28,93),(23,113,29,98),(24,82,30,91),(34,75,105,46),(36,73,107,44),(38,79,109,42),(40,77,111,48),(41,127,78,68),(43,125,80,66),(45,123,74,72),(47,121,76,70)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim11111222222
type++++-++-
imageC1C2C2C2C4Q8D4D8SD16Q16C4○D4
kernelC42.55Q8C22.4Q16C429C4C2×C4×C8C4×C8C42C22×C4C2×C4C2×C4C2×C4C2×C4
# reps14218224848

Matrix representation of C42.55Q8 in GL5(𝔽17)

160000
016000
001600
000013
000130
,
160000
0161500
01100
00010
00001
,
160000
00600
0141100
00040
00004
,
40000
015500
013200
000111
000616

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,13,0],[16,0,0,0,0,0,16,1,0,0,0,15,1,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,0,14,0,0,0,6,11,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,15,13,0,0,0,5,2,0,0,0,0,0,1,6,0,0,0,11,16] >;

C42.55Q8 in GAP, Magma, Sage, TeX

C_4^2._{55}Q_8
% in TeX

G:=Group("C4^2.55Q8");
// GroupNames label

G:=SmallGroup(128,566);
// by ID

G=gap.SmallGroup(128,566);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,120,422,58,2019,248,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^3>;
// generators/relations

׿
×
𝔽